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Outline

• Before RNNs: Perceptron and ConvNets

• RNNs, and Why?

• Some Math
• Forward pass

• Backpropagation refresher

• The RNN backward pass

• Some pros and cons
• On the difficulty of training RNNs

• Applications
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Supervised Learning • Compute objective function

• Measure the error (or distance)

• Adjust internal parameters 
(weights) to reduce the error
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Perceptrons

https://www.datacamp.com/tutorial/deep-learning-python 8/41



Multi-layer Perceptrons
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image Fully connected layer image Convolutional layer

From fully connected to convolution
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… … Fully Connected
Layer

Convolutional neural networks (CNNs)

11/41Lindsay, Convolutional Neural Networks as a Model of the Visual System: Past, Present, and Future, 2020
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l neural 
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Convolutional neural networks (CNNs)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks 12/41



https://www.pyimagesearch.com/2018/12/31/keras-conv2d-and-convolutional-layers/
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Image understanding with deep CNNs

Detection                                                        Segmentation                                                Recognition                 

What if the input/output is speech, texts or time-series? 
Not all problems can be converted into one with fixed-length inputs and outputs
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Recurrent Neural Networks (RNNs)

• RNNS take the previous 
output or hidden states 
as inputs. 

• The composite input at 
time t has some 
historical information 
about the happenings at 
time T < t

• RNNs are useful as their 
intermediate values 
(state) can store 
information about past 
inputs for a time that is 
not fixed a priori

Yann LeCun, Yoshua Bengio & Geoffrey Hinton, Deep Learning, Nature 2015 20/41



Sample RNN
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Backpropagatio
n 

Math time: the chain rule 

Yann LeCun, Yoshua Bengio & Geoffrey Hinton, Deep Learning, Nature 2015 28/41



Feedforward 

Yann LeCun, Yoshua Bengio & Geoffrey Hinton, Deep Learning, Nature 2015 29/41



Feedforward            vs         Backpropagation 
cost function for unit  l  
0.5(yl − tl)^2

Error derivative 
w.r.t output

Yann LeCun, Yoshua Bengio & Geoffrey Hinton, Deep Learning, Nature 2015 30/41



The RNN backward pass

𝐱0 ….

Hidden state

Cost

R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural networks, ICML 2013 31/41

http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf


Back Propagation Through Time (BPTT)

Temporal contribution: 
how θ at step k affects the cost at step t > k.

Long -and short- term contributions:
transport the error “in time“ from step t 
back to step k. 

R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural networks, ICML 2013 32/41
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RNN applications

• English sentence -> French sentence

• Image Captioning

Sutskever, I. Vinyals, O. & Le. Q. V. Sequence to sequence learning with neural networks. In  Proc. Advances in Neural 
Information Processing Systems 27 3104–3112 (2014). 34/41



VAME model: 
bidirectional RNN VAE
 (time window: 30)

Internal state at each time step ℎ𝑡

Hidden representation updates:

𝒉𝑡
𝑓

: hidden info of the forward pass

𝒉𝑡
𝑏: hidden info of the backward pass

𝑓: gated recurrent units as transition 
func

𝒉𝒊 = 𝒉𝒊
𝒇

+ 𝒉𝒊
𝒃

time sequence

(D: 2k x T)

𝑿 = 𝒙𝟏, 𝒙𝟐, … 𝒙𝟐𝒌

Prior: 𝑝𝜃 𝒛𝑖  ~ 𝑁 𝒛𝑖; 𝟎, 𝑰
Approximate posterior: 𝑞𝜙(𝒛𝑖|𝒙𝑖) 𝜇𝑧, Σ𝑧 

𝒛𝑖  = 𝜇𝑧 + 𝜎𝑧 ⊙  𝜀 
 

𝒁 = 𝒛𝟏, 𝒛𝟐, … 𝒛𝒎

𝒎 ≈ 𝟏𝟎

(D: m x T)
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Vanishing and the Exploding Gradient

R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural networks, ICML 2013

Recall:

Long -and short- term contributions:
transport the error “in time“ from step t back to step k. 

https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9

Shrink to zero or Explode to infinity

36/41
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Vanishing and the Exploding Gradient

R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural networks, ICML 2013

1. Small gradients 
2. Internal weights barely change 
3. The earlier layers fail to do any learning
4. RNN doesn’t learn the long-range dependencies 

across time steps

Recall:

Long -and short- term contributions:
transport the error “in time“ from step t back to step k. 

https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9
37/41
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Vanishing and the Exploding Gradient

R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural networks, ICML 2013

It is sufficient for the largest eigenvalue λ1 of the 𝐖𝑟𝑒𝑐𝑐to be < 1 for long term components to vanish 
(as t → ∞),

and necessary for it to be > 1 for gradients to explode.

Long -and short- term contributions:
transport the error “in time“ from step t back to step k. 

https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9
38/41
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Vanishing and the Exploding Gradient

• Activation functions like sigmoid. 
For larger inputs, it saturates at 0 or 
1 with a derivative very close to 0, 
leading to ~ no gradient at back prob

• Initial weights assigned to the 
network generate some large loss. 
Gradients accumulate and eventually 
result in large updates to the 
network weights. Overflow and NaN 
values

39/33



Solutions

• Proper Weight Initialization 
• The variance of outputs of each layer should = the variance of its inputs.

• The gradients should have equal variance before and after flowing through a 
layer in the reverse direction.

•  Using Non-saturating Activation Functions
• e.g. ReLU, Leaky ReLU

• Batch Normalization
• let the model learn the optimal scale and mean of each of the layer’s inputs.

• Gradient Clipping
• The threshold is a hyperparameter we can tune

Loffe ,Szegedy, Batch Normalization: Accelerating Deep Network Training b y Reducing Internal Covariate Shift, ArXiv 2015
R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural networks, ICML 2013 40/41
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Solutions & more

• Gated Recurrent Units (GRUs)

• Long Short-Term Memory (LSTMs)

• Residual/skip connections

• RNN VAE

• Bidirectional 

41/41



Thanks 
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Multi-Layer Network Demo

http://playground.tensorflow.org/
43/41
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How do error signals backpropagate in brains? 

44/41
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